Decoding the AI blackbox:

Why Explainable AI is non-negotiable

Granite Fort Advisory

Al Transformation, Governance, Risk & Compliance
Clarity. Compliance. Confidence.

www.granitefort.com

THE EXPLAINABILITY IMPERATIVE

You wouldn't sign off on a financial model no one could explain - so why are black-box AI models still getting a pass? AI models offer impressive results without revealing the "how" or "why" behind them. Often referred to as **black boxes**, this opaqueness raises significant concerns around trust, fairness, accountability, and safety.

In 2025, AI explainability is no longer a technical nicety - it is a governance, liability, and reputation requirement that underpins institutional trust. As AI becomes embedded in high-

2

stakes decisions - from approving loans and screening job applicants to determining insurance premiums and identifying fraud - corporate leaders can no longer afford to treat explainability as an optional feature.

If your AI system produces an undesired or harmful outcome, regulators and courts will not accept "we don't know why it happened" as an answer.

In this whitepaper, we make the executive case for explainable AI, clarify what explainability is (and is not), survey the evolving regulatory landscape and provide a practical playbook to embed explainability across the AI lifecycle.

AUDITABLE # EXPLAINABLE THIS DISTINCTION MATTERS

Too often, organizations mix up two different concepts:

- Auditable AI refers to whether a system has been documented, versioned, and internally
 inspected. Think of it as keeping a logbook and a clean paper trail for the AI.
- Explainable AI means a human can understand how the model arrived at its output.

Executives need to realize: a model can be fully auditable yet still completely opaque. This creates blind spots in risk, ethics and compliance.

Consider this example: your AI system denies someone a mortgage. If you can't explain the denial in a human-understandable way, you're potentially violating laws against discrimination, even if you've logged every technical step behind the scenes.

In regulated domains like lending, healthcare, employment and many others, explainability underpins fairness reviews, adverse-action notices, and effective appeal processes. It also enables meaningful human oversight by revealing which factors drove the prediction and how sensitive the outcome is to each.

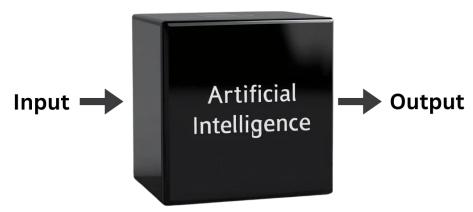
Operationally, explainable models shorten incident resolution time and make monitoring, bias testing, and model-drift investigations actionable.

Pair audit trails with standardized explanation methods and governance playbooks so decisions are both traceable and understandable end-to-end. This culminates in a formal **Explainability Statement** for each high-risk model, a critical document for regulators, auditors and internal stakeholders alike.

WHY DO AI MODELS TURN INTO BLACK BOXES?

Al typically is a black box because modern models learn highly non-linear, distributed internal representations across millions to billions of parameters, making it inherently hard to trace how specific inputs lead to specific outputs. Proprietary architectures, hidden training data, and limited access to model internals further obscure visibility into decision logic, even for system creators and auditors.

Al's inner decision-making remains concealed from view, functioning as opaque black box. Inputs go in and decisions come out, yet the intermediate reasoning remains obscure. This lack of transparency erodes trust and complicates the identification of errors or potential bias. Tackling such opacity is the core objective of Explainable AI (XAI).



Consider an Al-recommended Chili recipe: the system discovers that a specific mix of chiles, spices, aromatics, protein and simmer time reliably produce great flavor. But the Al can't articulate why that combination beats the

alternatives and produces a finger-licking delicious chili. It "knows" from patterns in training data, not from human-readable rules, so the rationale behind each choice stays opaque.

All opacity has real consequences for corporates. Thus, when All sets the price, prioritizes maintenance or routes support tickets without clear reasoning, it's harder to trust its decision, judge errors or assess bias.

Such opacity is not due to secrecy, but rather due to complexity. Here are some of the key reasons why AI models turn into black boxes:

Complex Interactions Hidden Beneath the Surface

Al models, especially machine learning ones, use many layers of complicated math that twist and turn in non-simple ways. These neural layers contain millions or billions of parts all working together. Because of this, it becomes very difficult for anyone to follow the exact path the model took to make a decision.

Hidden Learned Patterns

Instead of using clear, human-friendly features, AI models create their own internal concepts that are abstract and do not match how people think. These hidden patterns can help the model do a great job, but they make it hard for humans to explain or understand what is really going on.

Decisions Spread Out Across the Model

Unlike a person who might point to one or two reasons for making a choice, AI spreads its decision-making across many parts of the system. This way of working can make the model more accurate but makes it less clear and harder to explain why a decision was made.

Reliance on Data Details

Models learn from the examples they are given, but sometimes the relationships they find in the data are strange or not obvious. This means the model might be using hidden connections that don't make logical sense to people, which adds to the difficulty of explaining its conclusions.

Design Choices Favor Accuracy Over Clarity

Many AI systems are created with the goal of being as accurate as possible, even if that means being very complicated and unclear. This often leads to models that work well but whose inner workings are not transparent or easy to understand.

Other Factors Adding to the Mystery

Proprietary secrets can keep the model details hidden one purposefully. Or Explanation tools often give simplified stories that don't fully capture how the model truly works. Some models are so big and layered that new, unexpected behavior emerges, which can't be simply explained.

TRANSPARENCY, INTERPRETABILITY, EXPLAINABILITY: WHAT LEADERS NEED TO KNOW

These terms are often used interchangeably in AI discussions, but each plays a distinct role in governance, design, and oversight.

- **Transparency** = "what happened" i.e. openness about the system its data, design, and processes—so stakeholders can see and audit operations at the model, component, and training levels.
- **Explainability** = "how it happened" i.e. human-understandable reasons that describe the mechanisms or factors linking inputs to outputs for a specific decision, often via post-hoc methods when models aren't inherently interpretable.
- Interpretability = "why it matters (to the user)" i.e. the extent to which a human can understand and make sense of a model's outputs in context, ideally directly from the model's structure or logic (intrinsic interpretability).

This "what/how/why" triad brings clarity to governance and adoption. In practice, transparency enables accountability across the lifecycle, while interpretability and explainability make individual decisions legible to developers, risk teams, and end-users at the right level of detail.

In inherently interpretable systems, strong interpretability can reduce the need for extensive post-hoc explanations, whereas complex models rely more heavily on explainability to meet stakeholder and regulatory expectations.

This image shows a trustworthiness framework for Al, emphasizing how different properties—like fairness, responsibility, transparency, interactivity, interpretability, explainability, robustness, and & satisfaction, stability interact to build trustworthy AI systems.

Arrows between properties indicate mutual dependencies and how one quality contributes to or enhances another. At the center, "Trustworthiness" is the main goal, supported by these interconnected elements. The visual summarizes how a trustworthy AI system is not built

Fairness needed for provides Stability & needed by requires Responsibility Satisfaction **(3**) increases verifies needed for requires Transparency Robustness 00 Trustworthiness extends increases increases requires for Interactivity Explainability contributes to fosters validates enriches Interpretability

from one property alone, but from a network of interacting, mutually reinforcing qualities.

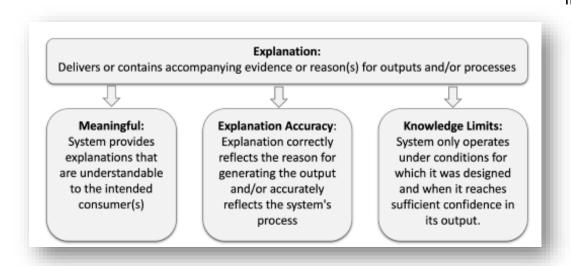
Figure reproduced from Ali et al., Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence, Information Fusion 99 (2023), CC BY 4.0.

NIST'S FOUR PRINCIPLES OF **EXPLAINABLE AI**

The U.S. National Institute of Standards and Technology (NIST) has provided four foundational principles for XAI. NIST frames explainability as human-centered and context-dependent: explanations should be tailored to the audience, the task, and the situation (e.g., regulatory disclosure, quality control, or customer interactions), and this lens applies across all AI techniques.

It defines key terms up front: "explanation" as the evidence or reasoning tied to an output or process, "output" as a system's decision or action (which varies by use case), and "process" as the underlying procedures, design, data, and workflow that produce results.

The four principles then set the bar: **Explanation** (provide reasons with outputs/processes), **Meaningful** (make explanations understandable to intended consumers), **Explanation Accuracy** (ensure explanations faithfully reflect how the system produced the result), and **Knowledge Limits** (operate only within designed conditions or sufficient confidence).



In NIST's figure, arrows indicate that for system to be explainable, it must first provide an **Explanation**; the remaining three principles the are fundamental properties of those explanations.

Attribution: Phillips, P. J., Hahn, C. A., Fontana, P. C., Yates, A. N., Greene, K., Broniatowski, D. A., & Przybocki, M. A. (2021). Four Principles of Explainable Artificial Intelligence (NISTIR 8312). National Institute of Standards and Technology. https://doi.org/10.6028/NIST.IR.8312.

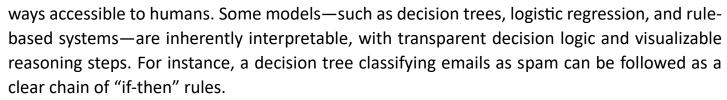
HOW TO MAKE AI EXPLAINABLE

Explainability in AI refers to the ability to clarify and effectively communicate how AI models generate decisions, fostering trust, fairness, and accountability across stakeholders—including developers, decision-makers, end users, and regulators. Explainability is critical for managing risks, meeting ethical standards, and complying with evolving regulatory frameworks such as the EU's AI Act and GDPR.

Explainability manifests at multiple levels:

- Global explanations provide overarching insights into a model's general behavior, revealing which features influence predictions across the entire dataset.
- Local explanations focus on individual decisions, detailing why the AI produced a particular outcome for a specific case.

At its core, explainability means identifying and presenting the key features driving model outputs in



However, many powerful and complex AI models, especially deep neural networks and ensemble methods like random forests, operate as "black boxes." Their multiple layers of nonlinear computations obscure direct understanding, raising concerns about trust and accountability in high-stakes domains.

To address this, organizations employ **post-hoc explainability techniques** that provide approximate but meaningful insights without requiring full model transparency:

• LIME (Local Interpretable Model-Agnostic Explanations) builds locally faithful surrogate models by perturbing input data and analyzing changes in predictions, providing interpretable explanations of individual predictions.

• SHAP (SHapley Additive exPlanations) uses cooperative game theory to fairly distribute the contribution of each feature to a prediction, offering both local and global interpretability with mathematically grounded attributions.

Additional advanced methods—like Integrated Gradients, Layer-wise Relevance Propagation, DeepLIFT, RETAIN, and visualization tools such as Grad-CAM—offer deeper insights for neural networks and sequence models. Industry-grade toolkits, including IBM's AI Explainability 360 and Google's What-If Tool, support auditing, debugging, and human-in-the-loop monitoring.

Despite their power, explainability methods face inherent challenges and limitations:

- They may oversimplify or misrepresent complex feature interactions or causal relationships in data.
- Feature correlation, dimensionality reduction, and encoding practices can obscure meaningful explanations.
- Explanations might be gamed or manipulated, presenting false rationales, which necessitates robust safeguards.
- Explainability approaches can be computationally intensive and may require translation to be accessible to non-expert stakeholders.

Because explainability alone does not guarantee safety or fairness, it must be embedded within a comprehensive Al governance framework. This includes:

- Ethical AI design from the outset, integrating domain knowledge to prevent biased or unsafe behavior.
- Continuous monitoring of model performance, bias

detection, and uncertainty measurement using tools like sensitivity analysis.

- Clear accountability structures that define human oversight roles and liability throughout the AI lifecycle.
- Transparent communication of explanations tailored to different stakeholder needs—from technical teams to executives and end users.

Best practices for advancing AI explainability include:

- Prioritizing interpretable models wherever possible, especially in sensitive and regulated sectors like healthcare, finance, and autonomous systems.
- Balancing accuracy and interpretability via hybrid or ensemble approaches as use-case demands evolve.
- Leveraging both global and local explanation methods to provide comprehensive understanding.

- Integrating explainability early in the AI lifecycle—from data preparation and model development to deployment and post-deployment monitoring (MLOps).
- Training and empowering non-AI experts—business leaders, domain professionals, operational staff—to understand and act on AI explanations.
- Preparing proactively for imminent regulatory and certification requirements, including explainability mandates in the emerging global AI regulatory landscape.

Ultimately, **explainable AI fosters trust, transparency, and responsible AI deployment**. It enables organizations not only to unlock AI's transformative value but also to safeguard against risks, uphold ethical standards, and meet societal expectations in an evolving AI-powered world.

And remember to ask your teams to create a clear and defensible **Explainability Statement** for each AI model: the ultimate proof of your commitment to transparent AI.

EXPLAINABILITY IS A CRITICAL IMPERATIVE

Explainability is no longer optional - it is a critical requirement for ethical, legal, and operational AI deployment. Without explainability, AI systems risk perpetuating biases, violating regulations, and losing user trust.

Regulatory Compliance

Global regulatory frameworks are increasingly mandating transparency and explainability in Aldriven decision-making to protect individual rights and ensure accountability. Key regulations include:

- The European Union's General Data Protection Regulation (GDPR) (Articles 13-15 and 21-22), which enshrines the legal principle of the "right to explanation." Organizations must provide meaningful, accessible information about the logic, significance, and potential impact of automated decisions, empowering affected individuals to understand, challenge, and seek redress for Al-driven outcomes. Recent judicial clarifications emphasize the need for explanations to be clear, actionable, and reflective of actual system behavior.
- The EU AI Act, introducing a robust regulatory framework for "high-risk" AI systems,
 mandates not only proactive transparency but also an explicit "right to explanation" for
 decisions with significant legal or fundamental rights impacts. This law extends explainability
 requirements to both fully and semi-automated decision processes, emphasizing human
 oversight, traceability, and operational logging.
- The U.S. Equal Credit Opportunity Act (ECOA) and Fair Credit Reporting Act (FCRA), which require disclosure of the specific reasons behind adverse credit decisions, ensuring fairness and preventing discriminatory practices.
- Guidance from the U.S. Federal Trade Commission (FTC), emphasizing truthful, transparent Al use and consumer protections.
- The Colorado Al Act, a pioneering state-level law with compliance deadlines extended to June 2026, further solidifies Al accountability and transparency obligations.

Together, these evolving regulations highlight explainability as a non-negotiable legal and ethical imperative for organizations deploying AI. Failure to provide clear, accurate explanations for AI decisions exposes companies to significant legal penalties, substantial fines, regulatory scrutiny, and lasting reputational risks. Proactive compliance requires integrating explainability throughout the AI lifecycle, tailoring communication to diverse stakeholders, and ensuring ongoing human oversight and auditability.

Enhancing Human-Al Collaboration

Explainable Al allows users to understand and effectively collaborate with Al systems, improving decision-making quality and fostering human-Al partnership. This collaboration unleashes the full potential of Al by combining machine efficiency with human expertise.

Ethical and Fair Decision-Making

Al models trained on biased data can cause unfair outcomes. Explainability reveals these biases, enabling audits and promoting fairness and ethics. This transparency is essential to uphold societal values and protect vulnerable groups from inadvertent harm.

Trust and Adoption

Transparency builds user confidence. Explainable AI helps users trust, engage with, and responsibly use AI-driven decisions. Ultimately, trust accelerates the adoption of AI technologies across diverse sectors and populations.

Debugging and Improvement

Explainability provides insight into model errors, supporting continuous refinement and reliability, especially in high-stakes domains. By identifying and addressing flaws early, organizations can enhance both performance and safety.

Accountability and Governance

Clear explanations enable auditability and responsibility, essential for effective AI governance and risk management. These mechanisms ensure AI systems operate within ethical and legal boundaries while maintaining public accountability.

Inclusive Design

Tailoring explanations to diverse users ensures AI benefits are accessible, fostering equity and understanding. Inclusive explainability also supports transparency across different cultures, languages, and levels of expertise.

Mitigating Operational Risks

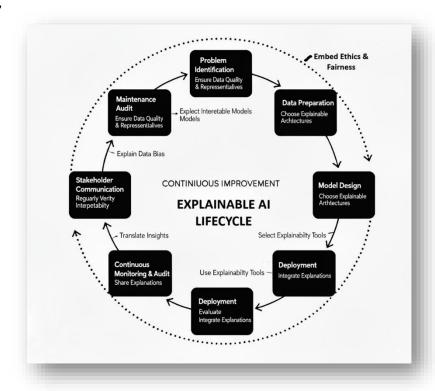
Explainability uncovers hidden system weaknesses early, reducing failures and maintaining system resilience. Proactively managing these risks safeguards organizations from operational disruptions and potential reputational damage.

Explainability is thus foundational to building AI that is powerful, trustworthy, and aligned with societal values and legal standards.

EXPLAINABLE AI LIFECYCLE

The Explainable AI lifecycle is a continuous, multi-phase process that embeds transparency and accountability at every stage of system development and operation. It begins with problem identification (ensuring data quality, representativeness, and ethical principles), followed by

data preparation and model design, where explainable architectures and specialized tools like LIME, SHAP and feature importance methods are selected. These tools are then evaluated integrated and at deployment, and actively used in continuous monitoring and audit to systematically analyze and explain model decisions. Explanations are refined through ongoing audits, stakeholder communication, and maintenance cycles, supporting defensibility and consistent compliance. This iterative approach enables organizations to deliver trustworthy,



transparent AI systems while continuously improving reliability and stakeholder confidence.

Stakeholder Roles and Responsibilities in Explainable AI are critical to ensuring transparency, accountability, and trust throughout the AI lifecycle. Key stakeholders include AI developers who design interpretable models and integrate explainability tools; data scientists who manage data quality and bias mitigation; compliance officers who enforce regulatory adherence; and business leaders who oversee governance frameworks and ethical standards. Operational teams monitor model performance and manage updates, while end-users and affected individuals require clear, accessible explanations to understand AI decisions. Effective

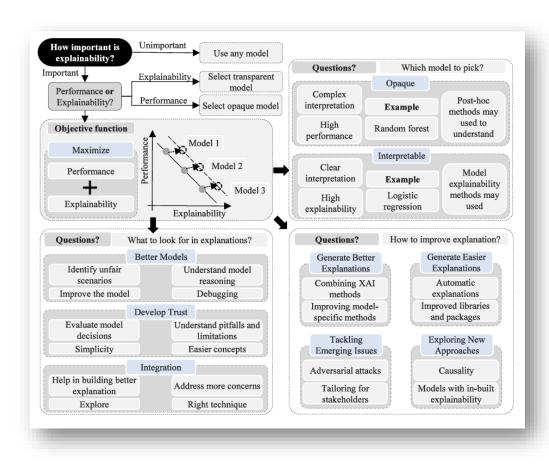
collaboration and communication among these roles enable responsible AI deployment, foster trust, and support continuous improvement.

Measuring the effectiveness of explainability involves assessing how well AI explanations enhance user understanding, trust, and decision-making. Key metrics include clarity, completeness, consistency, and relevance of explanations, as well as their ability to reveal biases or errors. User feedback, usability studies, and quantitative evaluations (such as fidelity to the model and impact on human-AI collaboration) are essential. Continuous measurement ensures explanations remain meaningful and actionable, supporting ongoing model improvement, regulatory compliance, and stakeholder confidence.

Embedding explainability into AI governance ensures that transparent, understandable AI systems are built, deployed, and managed responsibly throughout their lifecycle. This involves establishing clear policies, standards, and accountability mechanisms that mandate explainability as a core requirement. By integrating explainability into governance frameworks, organizations can effectively monitor model behavior, detect biases, enable human oversight, and comply with regulatory and ethical obligations. This fosters trust among stakeholders, mitigates risks, and supports sustainable, fair, and responsible AI adoption.

PRACTICAL FRAMEWORK FOR APPROACHING XAI

Selecting the right AI model requires careful consideration of both performance and explainability. There is often a **tradeoff between explainability and performance**: highly explainable models may have lower predictive accuracy, while more complex models can offer better performance but are harder to interpret. This diagram outlines a practical decision-making framework for choosing transparent versus opaque models, maximizing objectives, and leveraging XAI for improved results.



The figure shows a structured approach to the application of XAI using preferred selection criteria. After a model is selected, it advantageous to seek specific types of explanation and to use XAI to enhance the outcomes that can be achieved. Practitioners identify which can explanatory strategies most beneficial are across the AI lifecycle.

Attribution: Ali, S. et al. Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Information Fusion, 99, 101805. https://doi.org/10.1016/j.inffus.2023.101805. Figure reproduced under the terms of the Creative Commons CC BY 4.0 License.

A LEADER'S CHECKLIST FOR EXPLAINABILITY READINESS

To build trust and accountability in AI initiatives, leaders must proactively assess whether their organization is truly prepared to deliver meaningful and transparent explanations for their systems.

This is not merely a technical exercise but a crucial step in managing risk and meeting

stakeholder expectations. By asking the right questions, executives can verify that AI governance keeps pace with innovation.

Ultimately, this readiness determines whether your AI is a trusted strategic asset or an opaque liability.

As a Leader, you should ask:

- ✓ Have we clearly articulated explainability requirements for this AI system, tying them to regulatory, contractual, and ethical obligations?
- Have we mapped all stakeholders—including customers, regulators, affected communities, employees, and business partners—and tailored explanation formats (dashboards, plain language reports, technical documentation) to their needs?
- Are our AI teams selecting model-appropriate explainability methods and validating findings with domain experts (e.g., using interpretable models for critical applications, posthoc tools for complex ones)?
- ☑ Can we demonstrate auditable decision paths for all high-impact outcomes, including retention of original data inputs, model states, and rationale for key decisions?

- ☑ Is documentation of limitations, biases, assumptions, and risks made accessible for leadership review and continuously updated as models evolve?
- Is explainability woven into every stage of the AI lifecycle, from requirements gathering and design to testing, deployment, monitoring, and decommissioning?
- Are risk, compliance, and ethics officers actively involved in reviewing explanations for adequacy, completeness, and potential impact?
- ✓ Have we established and practiced governance policies setting "red lines" for model opacity, particularly in sensitive, regulated, or automated decision areas?
- ☑ Do clear escalation routes exist when model behavior cannot be justified or explanations fail to meet standards, including a process for documenting incidents and appeals?
- ☑ Do senior leaders regularly communicate explainability as part of our trust and accountability strategy, including metrics for transparency, regular stakeholder updates, and integration into organizational values?
- Are mechanisms in place for third parties (such as regulators, auditors, or communities) to probe and review model explanations, and to report concerns or appeal decisions?
- ☑ Is there visible diversity and inclusivity in the team responsible for explanation standards and reviews, ensuring a broad evaluation of risks and ethical impacts?
- ☑ Does the organization prioritize continuous learning and improvement in explainability, updating policies, tools, and training as AI evolves and regulations change?
- ☑ Do we maintain a formal **Explainability Statement** for each AI system, documenting its purpose, limitations, and the rationale for key decisions?

THE PATH FORWARD: BUILDING **EXPLAINABLE AI**

As AI continues to transform industries and impact lives, the imperative for explainability cannot be overstated. Explainable AI isn't just a compliance measure - it's a trust-builder, risk mitigator and competitive differentiator.

Organizations that embrace explainable AI:

- Reduce legal and regulatory exposure
- Build stronger stakeholder trust
- Operationalize AI responsibly and ethically
- Create a foundation for sustainable innovation

Executives must ensure AI initiatives do not outpace governance. When something goes wrong, what will matter most is why no one could explain the AI model's decisions.

Unexplainable AI is a business risk. Explainable AI is a strategic asset.

Want to understand if your AI systems are ready for explainability challenges? Need help with preparing your Explainability Statements? Contact us to schedule an Explainability assessment.

Granite Fort Advisory

Dallas, TX, United States
Tel: +1-469-713-1511
Engage@GraniteFort.com

Al Transformation, Governance, Risk & Compliance

Clarity. Compliance. Confidence.

© 2025 Granite Fort LLC. All rights reserved.

Document Control: GFA-7-5-r1-0925

www.granitefort.com

Disclaimer: The content provided in this article is for informational purposes only and does not constitute professional advice.